نوع مقاله : مقاله مروری

نویسنده

استادیار، گروه برق و کامپیوتر، دانشکده فنی و مهندسی، دانشگاه تربت حیدریه، تربت حیدریه، ایران.

چکیده

این مقاله وضعیت فعلی تحقیقات در مورد چگونگی استفاده از بینایی ماشین در حوزه گیاه زعفران را بررسی می­کند. زعفران یک ادویه با ارزش است که معمولاً دارای کاربردهای آشپزی و دارویی می­باشد. با توجه به ارزش این محصول، نیازمند به اطمینان از کیفیت و خلوص آن وجود دارد که این مهم را می‌توان از طرق مختلف بخصوص از طریق روش‌های مبتنی بر بینایی ماشین بررسی نمود. در این راستا در این مقاله جنبه‌های مختلف پردازش تصویر زعفران، ازجمله گرفتن تصویر، پیش‌پردازش، استخراج ویژگی و طبقه‌بندی بررسی شده­است. استفاده از تکنیک‌های مختلف تصویربرداری مانند تصویربرداری RGB، HSI و تصویربرداری فراطیفی به همراه مزایا و محدودیت‌های آن‌ها نیز موردبحث قرارگرفته است. این بررسی همچنین اهمیت استفاده از بینایی ماشین برای پردازش تصویر زعفران را در تشخیص تقلب زعفران که یک مشکل مهم در صنعت زعفران است، برجسته می‌کند. روش‌های مختلفی برای تشخیص تقلب، مانند آنالیز شیمی‌سنجی، یادگیری ماشینی و یادگیری عمیق، به‌تفصیل موردبحث قرارگرفته‌اند. به‌طورکلی، نتایج بررسی مقالات مختلف نشان می­دهد که پردازش تصویر زعفران یک حوزه تحقیقاتی امیدوارکننده است که پتانسیل قابل توجهی برای بهبود کیفیت و خلوص محصولات زعفران دارد.

کلیدواژه‌ها

Akbari-Ardagani, B., Mohammadzadeh-Moghadam, M., Karimi-Noghabi, M., Mohammad pour, M., & Khalilyan-Movahhed, M. (1400). Using computer vision in non-destructive detection of real and fake saffron. Agriculture and technology of saffron, 9(4), 409-429.
Aliabadi, R. (2013). Using smart techniques to check the quality of saffron flower Kerman Shahid Bahonar University]. Kerman.
Aliabadi, R., & Mohammadi, M. (2012). Quality control of saffron flower using smart techniques National Computer and Information Technology Conference,  https://civilica.com/doc/141977
Aliabadi, R., & Mohammadi, M. (2013). Presenting a new method for the automation of saffron flower cutting using smart techniques The second national conference of computer, electricity and information technology,  https://civilica.com/doc/153096/
Alighaleh, P., Khosravi, H., Rohani, A., Saeidirad, M. H., & Einafshar, S. (2022). The detection of saffron adulterants using a deep neural network approach based on RGB images taken under uncontrolled conditions. Expert Systems with Applications, 198(2), 116-128.
Amirvaresi, A., Rashidi, M., Kamyar, M., Amirahmadi, M., Daraei, B., & Parastar, H. (2020). Combining multivariate image analysis with high-performance thin-layer chromatography for development of a reliable tool for saffron authentication and adulteration detection. Journal of Chromatography A, 1628(2), 461-467. https://doi.org/https://doi.org/10.1016/j.chroma.2020.461461
Azarabadi, N., & Özdemir, F. (2018). determination of crocin content and volatile components in different qualities of iranian saffron. Gıda, 43(3), 476-489.
Bakhshi, H. G., Mahmoodreza; Abaspour, Mohammadhosein;. (2014). Computer vision algorithm for saffron flower alignment. 8th National Congress of Agricultural Machinery Engineering (Biosystem) and Mechanization,
Beiki, A. (2014). Classification and prediction of three-branched and multi-branched saffron stigma using unsupervised machine learning statistical tools. Saffron agronomy and technology, 2(3), 199-204. https://doi.org/https://doi.org/10.22048/jsat.2014.7810
Chaker-alhoseini, M. (2018). Presenting a method to detect the fakeness of saffron stigma product using image processing University of Science and Art].
Cusano, E., Consonni, R., Petrakis, E. A., Astraka, K., Cagliani, L. R., & Polissiou, M. G. (2018). Integrated analytical methodology to investigate bioactive compounds in Crocus sativus L. flowers. Phytochemical Analysis, 29(5), 476-486.
Dehbashi, M. R., Amir; Kardan Moghadam, Hosein;. (2022). Locating and detecting saffron flower using image processing techniques. Saffron agronomy and technology, 10(3), 227-260. https://doi.org/10.22048/jsat.2022.290185.1427
Djozan, D., Karimian, G., Jouyban, A., Iranmanesh, F., Gorbanpour, H., & Alizadeh-Nabil, A. (2014). Discrimination of saffron based on thin-layer chromatography and image analysis. JPC-Journal of Planar Chromatography-Modern TLC, 27(4), 274-280. https://doi.org/https://doi.org/10.1556/JPC.27.2014.4.7
Foschi, M., Tozzi, L., Di Donato, F., Biancolillo, A., & D’Archivio, A. A. (2023). A Novel FTIR-Based Chemometric Solution for the Assessment of Saffron Adulteration with Non-Fresh Stigmas. Molecules, 28(1), 33. https://doi.org/https://doi.org/10.3390/molecules28010033
Gracia, L., Perez-Vidal, C., & Gracia-López, C. (2009). Automated cutting system to obtain the stigmas of the saffron flower. biosystems engineering, 104(1), 8-17. https://doi.org/https://doi.org/10.1016/j.biosystemseng.2009.06.003
Jafari, A., & Bakhshipour, A. (2010). Development of suitable algorithm for recognition and locating saffron flower using machine vision International Conference on Agricultural Engineering-AgEng, 
Jafari, A., Bakhshipour, A., & Hemmatian, R. (2014). Integration of Color Features and Artificial Neural Networks for In-field Recognition of Saffron Flower. Iran Agricultural Research, 33(1), 1-14. https://doi.org/10.22099/IAR.2014.2376
Jamshidi, B. S., Mohammad-Hossein; Zarif-Neshat, Saeed; Azad-Shahraki, Farzad; . (2021). Appropriate and modern technologies to separate stigma from saffron flower. Saffron promotional magazine, 3(1), 8-16.
Kiani, S., & Minaei, S. (2016). Potential application of machine vision technology to saffron (Crocus sativus L.) quality characterization. Food chemistry, 212, 392-394. https://doi.org/https://doi.org/10.1016/j.foodchem.2016.04.132
Kiani, S., Minaei, S., & Ghasemi-Varnamkhasti, M. (2018). Instrumental approaches and innovative systems for saffron quality assessment. Journal of Food Engineering, 216, 1-10. https://doi.org/https://doi.org/10.1016/j.jfoodeng.2017.06.022
Maggi, M. A., Bisti, S., & Picco, C. (2020). Saffron: Chemical composition and neuroprotective activity. Molecules, 25(23), 5618-5626. https://doi.org/10.3390/molecules25235618
Minaei, S., Kiani, S., Ayyari, M., & Ghasemi-Varnamkhasti, M. (2017). A portable computer-vision-based expert system for saffron color quality characterization. Journal of applied research on medicinal and aromatic plants, 7, 124-130. https://doi.org/10.1016/j.jarmap.2017.07.004
Moghadamzadeh-Moghadam, M., Taghizadeh, M., Sadrnia, H., & Pourreza, H.-R. (2020). Classification of saffron using color features extracted from the image. Saffron agronomy and technology, 8(3), 319-329. https://doi.org/https://doi.org/10.22048/jsat.2020.206278.1362
Moghaddasi, M. S. (2010). Saffron chemicals and medicine usage. J Med Plants Res, 4(6), 427-430.
Mohamadzadeh Moghadam, M., Taghizadeh, M., Sadrnia, H., & Pourreza, H. R. (2020a). Classification of saffron using color features extracted from the image. Saffron agronomy and technology, 8(3), 319-399.
Mohamadzadeh Moghadam, M., Taghizadeh, M., Sadrnia, H., & Pourreza, H. R. (2020b). Nondestructive classification of saffron using color and textural analysis. Food Science & Nutrition, 8(4), 1923-1932. https://doi.org/https://doi.org/10.1002/fsn3.1478
Mohammadi, M., & Karami, M. (2021). Detecting the location and angle of saffron flowers in the image using deep convolutional networks. Journal of Machine Vision and Image Processing, 8(3), 45-55. https://doi.org/20.1001.1.23831197.1400.8.3.4.2
Mohammadzadeh-Moghadam, M. (2016). Investigating the effect of various drying methods on the quality of saffron and classification of dried saffron using digital image processing and different classification algorithms Mashhad Ferdowsi University].
Momeny, M., Neshat, A. A., Jahanbakhshi, A., Mahmoudi, M., Ampatzidis, Y., & Radeva, P. (2023). Grading and fraud detection of saffron via learning-to-augment incorporated Inception-v4 CNN. Food control, 147, 1-11. https://doi.org/https://doi.org/10.1016/j.foodcont.2022.109554
Pittenauer, E., Rados, E., Koulakiotis, N. S., Tsarbopoulos, A., & Allmaier, G. (2016). Processed stigmas of Crocus sativus L. imaged by MALDI‐based MS. Proteomics, 16(11),1726-1730. https://doi.org/10.1002/pmic.201500534
Poramini, A. (2017). Basics of machine learning (Vol. 1). Naghoos Publications.
Rozegar, M., & Golzarian, M. (2015). Application of image processing in the diagnosis and classification of plant and fruit diseases Second National Conference on Novel Topics in Agriculture, Tehran.
Saeidirad, M.-H. (2020). Mechanization of saffron production. In Saffron (pp. 187-204). Elsevier.
Sereshti, H., Poursorkh, Z., Aliakbarzadeh, G., & Zarre, S. (2018). Quality control of saffron and evaluation of potential adulteration by means of thin layer chromatography-image analysis and chemometrics methods. Food control, 90, 48-57.
Sereshti, H., Poursorkh, Z., Aliakbarzadeh, G., Zarre, S., & Ataolahi, S. (2018). An image analysis of TLC patterns for quality control of saffron based on soil salinity effect: A strategy for data (pre)-processing. Food chemistry, 239, 831-839.
Yasrebi, S. E., Zabah, I., Behzadian, B., Marousi, A., & Rezaei, R. (2019). Classification of saffron based on its apparent characteristics using artificial neural networks. Saffron agronomy and technology, 7(4), 521-535. https://doi.org/https://doi.org/10.22048/jsat.2019.149440.1316
Zeraatkar, M., Khalili, K., & Foorginejad, A. (2016). High‐Precision Laser Scanning System for Three‐Dimensional Modeling of Saffron Flower. Journal of Food Process Engineering, 39(6), 553-563.