Akbari-Ardagani, B., Mohammadzadeh-Moghadam, M., Karimi-Noghabi, M., Mohammad pour, M., & Khalilyan-Movahhed, M. (1400). Using computer vision in non-destructive detection of real and fake saffron. Agriculture and technology of saffron, 9(4), 409-429.
Aliabadi, R. (2013). Using smart techniques to check the quality of saffron flower Kerman Shahid Bahonar University]. Kerman.
Aliabadi, R., & Mohammadi, M. (2012). Quality control of saffron flower using smart techniques National Computer and Information Technology Conference, https://civilica.com/doc/141977
Aliabadi, R., & Mohammadi, M. (2013). Presenting a new method for the automation of saffron flower cutting using smart techniques The second national conference of computer, electricity and information technology, https://civilica.com/doc/153096/
Alighaleh, P., Khosravi, H., Rohani, A., Saeidirad, M. H., & Einafshar, S. (2022). The detection of saffron adulterants using a deep neural network approach based on RGB images taken under uncontrolled conditions. Expert Systems with Applications, 198(2), 116-128.
Amirvaresi, A., Rashidi, M., Kamyar, M., Amirahmadi, M., Daraei, B., & Parastar, H. (2020). Combining multivariate image analysis with high-performance thin-layer chromatography for development of a reliable tool for saffron authentication and adulteration detection. Journal of Chromatography A, 1628(2), 461-467. https://doi.org/https://doi.org/10.1016/j.chroma.2020.461461
Azarabadi, N., & Özdemir, F. (2018). determination of crocin content and volatile components in different qualities of iranian saffron. Gıda, 43(3), 476-489.
Bakhshi, H. G., Mahmoodreza; Abaspour, Mohammadhosein;. (2014). Computer vision algorithm for saffron flower alignment. 8th National Congress of Agricultural Machinery Engineering (Biosystem) and Mechanization,
Beiki, A. (2014). Classification and prediction of three-branched and multi-branched saffron stigma using unsupervised machine learning statistical tools. Saffron agronomy and technology, 2(3), 199-204. https://doi.org/https://doi.org/10.22048/jsat.2014.7810
Chaker-alhoseini, M. (2018). Presenting a method to detect the fakeness of saffron stigma product using image processing University of Science and Art].
Cusano, E., Consonni, R., Petrakis, E. A., Astraka, K., Cagliani, L. R., & Polissiou, M. G. (2018). Integrated analytical methodology to investigate bioactive compounds in Crocus sativus L. flowers. Phytochemical Analysis, 29(5), 476-486.
Dehbashi, M. R., Amir; Kardan Moghadam, Hosein;. (2022). Locating and detecting saffron flower using image processing techniques. Saffron agronomy and technology, 10(3), 227-260. https://doi.org/10.22048/jsat.2022.290185.1427
Djozan, D., Karimian, G., Jouyban, A., Iranmanesh, F., Gorbanpour, H., & Alizadeh-Nabil, A. (2014). Discrimination of saffron based on thin-layer chromatography and image analysis. JPC-Journal of Planar Chromatography-Modern TLC, 27(4), 274-280. https://doi.org/https://doi.org/10.1556/JPC.27.2014.4.7
Foschi, M., Tozzi, L., Di Donato, F., Biancolillo, A., & D’Archivio, A. A. (2023). A Novel FTIR-Based Chemometric Solution for the Assessment of Saffron Adulteration with Non-Fresh Stigmas. Molecules, 28(1), 33. https://doi.org/https://doi.org/10.3390/molecules28010033
Gracia, L., Perez-Vidal, C., & Gracia-López, C. (2009). Automated cutting system to obtain the stigmas of the saffron flower. biosystems engineering, 104(1), 8-17. https://doi.org/https://doi.org/10.1016/j.biosystemseng.2009.06.003
Jafari, A., & Bakhshipour, A. (2010). Development of suitable algorithm for recognition and locating saffron flower using machine vision International Conference on Agricultural Engineering-AgEng,
Jafari, A., Bakhshipour, A., & Hemmatian, R. (2014). Integration of Color Features and Artificial Neural Networks for In-field Recognition of Saffron Flower. Iran Agricultural Research, 33(1), 1-14. https://doi.org/10.22099/IAR.2014.2376
Jamshidi, B. S., Mohammad-Hossein; Zarif-Neshat, Saeed; Azad-Shahraki, Farzad; . (2021). Appropriate and modern technologies to separate stigma from saffron flower. Saffron promotional magazine, 3(1), 8-16.
Kiani, S., & Minaei, S. (2016). Potential application of machine vision technology to saffron (Crocus sativus L.) quality characterization. Food chemistry, 212, 392-394. https://doi.org/https://doi.org/10.1016/j.foodchem.2016.04.132
Kiani, S., Minaei, S., & Ghasemi-Varnamkhasti, M. (2018). Instrumental approaches and innovative systems for saffron quality assessment. Journal of Food Engineering, 216, 1-10. https://doi.org/https://doi.org/10.1016/j.jfoodeng.2017.06.022
Maggi, M. A., Bisti, S., & Picco, C. (2020). Saffron: Chemical composition and neuroprotective activity. Molecules, 25(23), 5618-5626. https://doi.org/10.3390/molecules25235618
Minaei, S., Kiani, S., Ayyari, M., & Ghasemi-Varnamkhasti, M. (2017). A portable computer-vision-based expert system for saffron color quality characterization.
Journal of applied research on medicinal and aromatic plants,
7, 124-130.
https://doi.org/10.1016/j.jarmap.2017.07.004
Moghadamzadeh-Moghadam, M., Taghizadeh, M., Sadrnia, H., & Pourreza, H.-R. (2020). Classification of saffron using color features extracted from the image. Saffron agronomy and technology, 8(3), 319-329. https://doi.org/https://doi.org/10.22048/jsat.2020.206278.1362
Moghaddasi, M. S. (2010). Saffron chemicals and medicine usage. J Med Plants Res, 4(6), 427-430.
Mohamadzadeh Moghadam, M., Taghizadeh, M., Sadrnia, H., & Pourreza, H. R. (2020a). Classification of saffron using color features extracted from the image. Saffron agronomy and technology, 8(3), 319-399.
Mohamadzadeh Moghadam, M., Taghizadeh, M., Sadrnia, H., & Pourreza, H. R. (2020b). Nondestructive classification of saffron using color and textural analysis. Food Science & Nutrition, 8(4), 1923-1932. https://doi.org/https://doi.org/10.1002/fsn3.1478
Mohammadi, M., & Karami, M. (2021). Detecting the location and angle of saffron flowers in the image using deep convolutional networks. Journal of Machine Vision and Image Processing, 8(3), 45-55. https://doi.org/20.1001.1.23831197.1400.8.3.4.2
Mohammadzadeh-Moghadam, M. (2016). Investigating the effect of various drying methods on the quality of saffron and classification of dried saffron using digital image processing and different classification algorithms Mashhad Ferdowsi University].
Momeny, M., Neshat, A. A., Jahanbakhshi, A., Mahmoudi, M., Ampatzidis, Y., & Radeva, P. (2023). Grading and fraud detection of saffron via learning-to-augment incorporated Inception-v4 CNN. Food control, 147, 1-11. https://doi.org/https://doi.org/10.1016/j.foodcont.2022.109554
Pittenauer, E., Rados, E., Koulakiotis, N. S., Tsarbopoulos, A., & Allmaier, G. (2016). Processed stigmas of Crocus sativus L. imaged by MALDI‐based MS. Proteomics, 16(11),1726-1730. https://doi.org/10.1002/pmic.201500534
Poramini, A. (2017). Basics of machine learning (Vol. 1). Naghoos Publications.
Rozegar, M., & Golzarian, M. (2015). Application of image processing in the diagnosis and classification of plant and fruit diseases Second National Conference on Novel Topics in Agriculture, Tehran.
Saeidirad, M.-H. (2020). Mechanization of saffron production. In Saffron (pp. 187-204). Elsevier.
Sereshti, H., Poursorkh, Z., Aliakbarzadeh, G., & Zarre, S. (2018). Quality control of saffron and evaluation of potential adulteration by means of thin layer chromatography-image analysis and chemometrics methods. Food control, 90, 48-57.
Sereshti, H., Poursorkh, Z., Aliakbarzadeh, G., Zarre, S., & Ataolahi, S. (2018). An image analysis of TLC patterns for quality control of saffron based on soil salinity effect: A strategy for data (pre)-processing. Food chemistry, 239, 831-839.
Yasrebi, S. E., Zabah, I., Behzadian, B., Marousi, A., & Rezaei, R. (2019). Classification of saffron based on its apparent characteristics using artificial neural networks. Saffron agronomy and technology, 7(4), 521-535. https://doi.org/https://doi.org/10.22048/jsat.2019.149440.1316
Zeraatkar, M., Khalili, K., & Foorginejad, A. (2016). High‐Precision Laser Scanning System for Three‐Dimensional Modeling of Saffron Flower. Journal of Food Process Engineering, 39(6), 553-563.