نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه بیتوکنولوژی کشاورزی و بهنژادی گیاهی، دانکشده کشاورزی، دانشگاه فردوسی، مشهد، ایران

2 2- دانشجوی دکترا، گروه بیوتکنولوژی و به‌نژادی گیاهی، دانشگاه فردوسی مشهد

3 3- استادیار گروه بیوتکنولوژی و به‌نژادی گیاهی، دانشگاه فردوسی مشهد

چکیده

علیرغم اهمیت اقتصادی ویژه زعفران، پژوهش­های چشمگیری در زمینه بیولوژی مولکولی و ژنتیک این گیاه انجام نشده است. تریپلویید و نرعقیمی، فقدان تنوع ژنتیکی، دشواری کشت بافت و انتقال ژن از جمله دلایل پیشرفت­های اندک در پژوهش­های مولکولی زعفران است. کشت سوسپانسیون سلولی زعفران کمک بسزایی در بهبود پیشرفت این امر خواهد کرد، با این حال تولید سوسپانسیون سلولی پویا در زعفران همواره با مشکلاتی مواجه بوده است. بدین منظور، با استفاده از غلظت­های مختلف تنظیم کننده­های رشد، محیط بهینه القا کالوس در بنه زعفران را به دست آورده و به بهینه کردن کشت سوسپانسیون سلولی در زعفران اقدام شد. این آزمایش در قالب طرح کاملاً تصادفی با دو تکرار که هر کدام حاوی 10 ریز نمونه بودند، انجام گرفت. بیشترین درصد کالوس زایی و وزن تازه کالوس­ها در تیمار حاوی دو میلی­گرم  بر لیتر 2, 4-D و یک میلی­گرم بر لیتر BAP به دست آمد. در مرحله بعد از کالوس­های حاصل از این تیمار جهت کشت سوسپانسیون سلولی استفاده گردید. محیط SM3 حاوی 2/0 میلی­گرم بر لیتر BAP، 2/0 میلی­گرم بر لیتر زآتین و 2 میلی گرم بر لیتر NAA دارای بهترین سرعت رشد در کشت سوسپانسیون سلولی بود ولی سلول­ها در این تیمار هورمونی دارای شکل و فرم مناسب نبودند. محیط SM2 حاوی دو میلی­گرم  بر لیتر 2, 4-D و یک میلی­گرم بر لیتر BAP دارای سرعت رشد مناسب و سلول­هایی با اندازه کوچک و دارای رنگیزه بودند که از نظر کیفیت بهترین عملکرد را در بین تیمار­های کشت مایع دارا بود. جهت افزایش کیفیت از مواد کنترل کننده تولید فنول استفاده شد. افزودن PVP سبب افزایش سرعت رشد سوسپانسیون سلولی در محیط SM2 گردید. محیط SM2 به عنوان محیط کشت مناسب برای ایجاد کشت سوسپانسیون سلولی پویا در زعفران، جهت استفاده در مطالعات فیزیولوژیکی و مولکولی، معرفی می­شود.

کلیدواژه‌ها

Ahmad, I., Hussain, T., Ashraf, I., Nafees, M., Maryam, R. M., & Iqbal, M. (2013). Lethal effects of secondary metabolites on plant tissue culture. Am Eurasian J Agric Environ Sci, 13(4), 539-547.‏
Amini, F., Ghanbarzadeh, Z. & Askary Mehrabadi, M. (2013). Optimization of callus production and plant regeneration in Salsola arbuscular pall. Journal of Cell and Tissue, 4(2), 129-137.
Busconi, M., Soffritti, G., & Fernández, J. A. (2020). Utilizing O-mics technologies for saffron valorization. In Saffron (pp. 219-228). Woodhead Publishing.
Huang, T. K., & McDonald, K. A. (2012). Bioreactor systems for in vitro production of foreign proteins using plant cell cultures. Biotechnology advances30(2), 398-409.‏
Georgiev, M. I., Weber, J. & Maciuk, A. (2009). Bioprocessing of plant cell cultures for mass production of targeted compounds. Applied Microbiology and Biotechnology, 83(5), 809-823.
Kohansal, M., hendizadeh, H., sahabi, H. (2022). Investigating the Factors Affecting Iran's Saffron Trade with an Emphasis on the Role of Trade Sanctions. Journal of Saffron Research, 9(2), 322-310.
Konjkav Monfared, A. (2022). The Effect of Internet Marketing Capabilities on International Communications and Export Capabilities of Companies Operating in The Saffron Industry. Journal of Saffron Research, 10(1).
Khoshpeyk, S., sadrabadi haghghi, R., ahmadian, A. (2022). The Effect of Irrigation Water Quality and Application of Silicon, Nanosilicon and Superabsorbent Polymer on the Yield and Active Ingredient of Saffron (Crocus sativus L.). Journal of Saffron Research, 10(1), 64-83.
Moradi, A., Zarinkamar, F., De Domenico, S., Mita, G., Di Sansebastiano, G. P., Caretto, S. (2020). Salycilic Acid Induces Exudation of Crocin and Phenolics in Saffron Suspension-Cultured Cells. Plants, 9(8), 949.
Moscatiello, R., Baldan, B., Navazio, L. (2013). Plant cell suspension cultures. Methods Mol Biol, 953, 77-93.
Moshtaghi, N. (2020). Tissue and cell culture of saffron. In Saffron (pp. 229-246). Woodhead Publishing.
Mustafa, N.R., De Winter, W., Van Iren, F., Verpoorte R. (2011). Initiation, growth and cryopreservation of plant cell suspension cultures. Nature Protocols, 6, 715.
Ramandi, A., Nourashrafeddin, M., Marashi, H., Seifi, A. (2023). Microbiome contributes to phenotypic plasticity in saffron crocus. World Journal of Microbiology and Biotechnology, 39(9).
Ramandi, A., Naseri, M., Yousefijavan, I. (2022). The Effect of aqueous extract of crocus sativus style on blood coagulation indices in Rats. Journal of Saffron Research, 10(1), 168-160.
Rademacher, T., Sack, M., Blessing, D., Fischer, R., Holland, T., & Buyel, J. (2019). Plant cell packs: a scalable platform for recombinant protein production and metabolic engineering. Plant Biotechnology Journal17(8), 1560- 1566.‏
Ramandi, A., Javan, I. Y., Tazehabadi, F. M., Asl, G. I., Khosravanian, R., & Ebrahimzadeh, M. H. (2019). Improvement in Seed Surface Sterilization and in vitro Seed Germination of Ornamental and Medicinal Plant-Catharanthus roseus (L.). Chiang Mai Journal of Science, 46(6), 1107-1112.‏
Rezaei, M., Sharifi, H., & Seifi, A. (2022). Transcriptome assembly and identification of EST-SSR markers in crocus sativus. Saffron Agronomy and Technology10(1), 41-49.
Safarnejad, A., Alamdari, S. B. L., Darroudi, H. & Dalir, M. (2016). The effect of different hormoneson callus induction, regeneration and multiplication of saffron (Crocus sativus L.) corms. Saffron Agronomy & Technology, 4(2), 143-154.
Seifi, A., & Shayesteh, H. (2020). Molecular biology of Crocus sativus. In Saffron (pp. 247-258). Woodhead Publishing.
Sello, S., Moscatiello, R., La Rocca, N., Baldan, B., Navazio, L. (2017). A rapid and efficient method to obtain photosynthetic cell suspension cultures of Arabidopsis thaliana. Frontiers in Plant Science, 8, 1444.
Sharma, K., Rathour, R., Sharma, R., Goel, S., Sharma, T. & Singh, B. (2008). In vitro cormlet development in Crocus sativus. Plant Biology, 52(4), 709-712.
Schmidt, T., Heitkam, T., Liedtke, S., Schubert, V., & Menzel, G. (2019). Adding color to a century‐old enigma: multi‐color chromosome identification unravels the autotriploid nature of saffron (Crocus sativus) as a hybrid of wild Crocus cartwrightianus cytotypes. New Phytologist222(4), 1965- 1980.‏
Shokouhi, D., Seifi, A. (2021). Growth dynamics and cell viability in tomato suspension cultures derived from different types of calli. International Journal of Horticulture Science and Technology, 8, 25-35.
Taherkhani, T., Asghari Zakaria, R., Omidi, M., & Zare, N. (2019). Effect of ultrasonic waves on crocin and safranal content and expression of their controlling genes in suspension culture of saffron (Crocus sativus L.). Natural Product Research, 33(4), 486-493.
Yoon, S. Y. H., Ketchum, R. E., Caldwell, C. G. (2015). U.S. Patent Application No. 14, 395-387.