نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی منابع طبیعی، دانشکده کشاورزی و منابع طبیعی، دانشگاه هرمزگان

2 'گروه مهندسی منابع طبییعی، دانشکده کشاورزی و منابع طبیعی ، دانشگاه هرمزگان

3 گروه علوم و مهندسی آب، دانشکده کشاورزی و منابع طبیعی، دانشگاه بین المللی امام خمینی

4 پژوهشگر، دانشگاه کوئینزلند، استرالیا

چکیده

زعفران از کارآمدترین محصولات کشاورزی از نظر مصرف آب بوده و از نظر نیاز به عناصر غذایی نیز گیاهی کم­توقع محسوب می­شود. ایران بزرگ­ترین تولید کننده و صادرکننده زعفران در جهان است به­طوری­که حدود 90% از تولید و سطح زیرکشت زعفران در دنیا متعلق به ایران است. 96% زعفران ایران در خراسان تولید می‌شود. تحقیق حاضر با هدف بررسی تغییرات ردپای آب زعفران تحت تاثیر تغییر اقلیم گذشته طی دوره‌ی 1385 تا 1396 در خراسان صورت گرفته است. براساس نتایج مناطق تولید زعفران در خراسان با کمک روش FCM به سه منطقه همگن اگروکلیماتیک تقسیم شد. میانگین وزنی ردپای آب کل زعفران در خراسان 2833 مترمکعب بر کیلوگرم است که سهم ردپای آبی و سبز به­ترتیب 81/89، 11/18و سهم ردپای آب خاکستری بسیار ناچیز و در حدود 005/0 درصد است؛ که بیشترین ردپای آب مربوط به شهرستان بجستان (کلاستر2) (8/4176 مترمکعب بر کیلوگرم) و کمترین ردپای آب مربوط به شهرستان بشرویه (کلاستر 3) (5/1609 مترمکعب بر کیلوگرم) می­باشد. متوسط ارزش اقتصادی زعفران 61/0 دلار برمترمکعب است که به‌ترتیب بیشترین و کمترین آن متعلق به شهرستان بشرویه و بجستان ( 03/1 و 40/0 دلار در هر مترمکعب) می­باشد. نتایج تحلیل روند عملکرد و ردپای آب زعفران نشان داد که اجزاء ردپای آب زعفران طی دوره آماری مورد مطالعه دارای روند کاهشی معنی­دار و عملکرد زعفران نیز طی این دوره دارای روند افزایشی می­باشد. همچنین روند متغیرهای اقلیمی نشان داد، دما رو به افزایش و رطوبت و بارش رو به کاهش است، اما این روند از نظر آماری بی‌معنی و ناچیز است.

کلیدواژه‌ها

Ahmadi, M., Etedali, H. R., & Elbeltagi, A. (2021). Evaluation of the effect of climate change on maize water footprint under RCPs scenarios in Qazvin plain, Iran. Agricultural Water Management254, 106969.
Aligholinia T, Rezaie H, Bahmanesh J, Montaseri M (2015). Sustainable management of water resources in order to maximize water extraction with a water footprint approach. Master's thesis, Faculty of Agriculture, Urmia University (In Persian)
Aligholinia, T., Sheibani, H., Mohammadi, O., & Hesam, M. (2019). Evaluation and comparison of blue, green and gray water footprint of wheat in different climates of Iran.
Allen, F., Qian, J., & Qian, M. (2005). Law, finance, and economic growth in China. Journal of financial economics77(1), 57-116.
Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations 56 (97): e156.
Asadi Zarch, M. A. (2017). Analyzing climate change effects on drought occurrence in Yazd province, Iran. Desert Management5(9), 74-90. doi: 10.22034/jdmal.2017.27980.
Ayala, L. M., van Eupen, M., Zhang, G., Pérez-Soba, M., Martorano, L. G., Lisboa, L. S., & Beltrao, N. E. (2016). Impact of agricultural expansion on water footprint in the Amazon under climate change scenarios. Science of the Total Environment569, 1159-1173.
Babaee, M., Maroufpoor, S., Jalali, M., Zarei, M., & Elbeltagi, A. (2021). Artificial intelligence approach to estimating rice yield. Irrigation and Drainage70(4), 732-742.
Babazadeh, H., & Saraeetabrizi, M. (2013). Calibration of SWAP Model for Simulating Crop Yield, Biological Yield and Soybean Water Use Efficiency. Irrigation Sciences and Engineering, 35(4), 83-96.
Baghalian, K., Sheshtamand, M. S., & Jamshidi, A. H. (2010). Genetic variation and heritability of agro-morphological and phytochemical traits in Iranian saffron (Crocus sativus L.) populations. Industrial Crops and Products31(2), 401-406.
Bazrafshan, O., & Gerkani Nezhad Moshizi, Z. (2019). Assessment of Water Use Efficiency and Water Footprint of Saffron Production in Iran. Saffron agronomy and technology7(4), 505-519. doi: 10.22048/jsat.2019.141824.1311
Bazrafshan, O., & Moshizi, Z. G. N. (2018). The impacts of climate variability on spatiotemporal water footprint of tomato production in the Hormozgan. Journal of Water and Soil32(1).
Bazrafshan, O., Etedali, H. R., Moshizi, Z. G. N., & Shamili, M. (2019a). Virtual water trade and water footprint accounting of Saffron production in Iran. Agricultural water management213, 368-374.
Bazrafshan, O., Zamani, H., Etedali, H. R., & Dehghanpir, S. (2019b). Assessment of citrus water footprint components and impact of climatic and non-climatic factors on them. Scientia Horticulturae250, 344-351.
Chapagain, A. K., & Hoekstra, A. Y. (2008). The global component of freshwater demand and supply: an assessment of virtual water flows between nations as a result of trade in agricultural and industrial products. Water international33(1), 19-32.
Chapagain, A. K., Hoekstra, A. Y., & Savenije, H. H. (2006). Water saving through international trade of agricultural products. Hydrology and Earth System Sciences10(3), 455-468.
Chico D, Aldaya M, Garrido A (2013). A water footprint assessment of a pair of jeans: the influence of agricultural policies on the sustainability of consumer products. Journal of Cleaner Production 57:238-248
Chukalla, A. D., Krol, M. S., & Hoekstra, A. Y. (2015). Green and blue water footprint reduction in irrigated agriculture: effect of irrigation techniques, irrigation strategies and mulching. Hydrology and earth system sciences19(12), 4877-4891.
Ellis, E. C., & Ramankutty, N. (2008). Putting people in the map: anthropogenic biomes of the world. Frontiers in Ecology and the Environment6(8), 439-447.
Farajnia, A., Moravej, K. (2020). Agro climatic Zoning of Saffron Culture in East Azarbayjan Province. Journal of Saffron Research, 7(2), 251-267. doi: 10.22077/jsr.2018.1445.1057
Feizi, H., Moradi, R. (2020). Assessing involved Managing Factors in Gap Yield between Traditional and Ideal Saffron Cultivating Systems in Razavi and South Khorasan Provinces. Journal of Saffron Research, 7(2), 283-298. doi: 10.22077/jsr.2019.2242.1089
Fulton, J., Norton, M., & Shilling, F. (2019). Water-indexed benefits and impacts of California almonds. Ecological indicators96, 711-717.
Gohari, A. R., Saeidnia, S., & Mahmoodabadi, M. K. (2013). An overview on saffron, phytochemicals, and medicinal properties. Pharmacognosy reviews7(13), 61.
Hoekstra AY, Chapagain AK (2007). Water footprints of nations: Water use by people as a function of their consumption pattern. Journal of Water Resources Management 21(1):35-48
Hoekstra, A. Y., Chapagain, A. K., Aldaya, M. M., & Mekonnen, M. M. (2011). The water footprint assessment manual: Setting the global standard. Routledge.
Hoekstra, A. Y., Mekonnen, M. M., Chapagain, A. K., Mathews, R. E., & Richter, B. D. (2012). Global monthly water scarcity: blue water footprints versus blue water availability. PloS one7(2), e32688.
IRIMO, 2017. Iran Meteorological Bulletin. Islamic Republic of Iran Meteorological Organization Press, Tehran. [In Persia].
Khanali, M., Shahvarooghi Farahani, S., Shojaei, H., & Elhami, B. (2017). Life cycle environmental impacts of saffron production in Iran. Environmental Science and Pollution Research24(5), 4812-4821.
Madani, K. (2014). Water management in Iran: what is causing the looming crisis?. Journal of environmental studies and sciences4(4), 315-328.
Maleki, F., Kazemi, H., Siahmargue, A., Kamkar, B. (2019). Investigation of climatic factors of Azadshahr township (Golestan province) in order to development of saffron cropping. Journal of Saffron Research, 7(1), 123-143. doi: 10.22077/jsr.2018.1420.1056
Mekonnen, M. M., & Hoekstra, A. Y. (2011). The green, blue and grey water footprint of crops and derived crop products. Hydrology and Earth System Sciences15(5), 1577-1600.
Mekonnen, M. M., & Hoekstra, A. Y. (2016). Four billion people facing severe water scarcity. Science advances2(2), e1500323.
Ministry of Agriculture- Jihad (MAJ), 2021.
Nazeri Tahrudi, M., Ahmadi, F., & Khalili, K. (2017). Evaluation the Trend and Trend Chang Point of Urmia Lake Basin Precipitation. Water and Soil31(2), 644-659. doi: 10.22067/jsw.v31i2.55338
Rahimipour Anaraki M R, Mohammadi A, Rafieian M, Arjmandi R, Karimi S. (2020). Evaluation of Virtual Water and Water Footprint of Crop Production (Case study: Qaleganj County). Arid Regions Geographic Studies, 11 (41) :77-92
Rasooli Majd N, Montaseri M, Bahmanesh J, Rezaei H (2015) Identification and evaluation of the water footprint index, broken down by water, green water and gray water, by applying climate change. Master's Thesis, Faculty of Agriculture, Urmia University (In Persian)
Reddy, K. S., Maruthi, V., Pankaj, P. K., Kumar, M., Prabhakar, M., Reddy, A. G. K., ... & Koradia, A. K. (2022). Water Footprint Assessment of Rainfed Crops with Critical Irrigation under Different Climate Change Scenarios in SAT Regions. Water14(8), 1206.
Rokni, K., Ahmad, A., Selamat, A., & Hazini, S. (2014). Water feature extraction and change detection using multitemporal Landsat imagery. Remote sensing6(5), 4173-4189.
Ruspini, E. H. (1969). A new approach to clustering. Information and control15(1), 22-32.
Safdari, M., Hekmatnia, H., & Khajedad Miri, E. (2022). Water Use Efficiency of Wheat from the Perspective of Water Footprint (Case Study: Sistan and Baluchestan Province). Iranian Journal of Irrigation & Drainage15(6), 1469-1480.
Sepaskhah, A. R., & Kamgar, H. A. (2009). Saffron irrigation regime.
Shirzadi Laskookalayeh, S., Sabuhi Sabuni, M., Keikha, A. A., & Davari, K. (2017). Irrigation management of saffron by using the price and quantity policies of water (case study: Naishabur basin). Saffron agronomy and technology5(2), 149-160.
Sidhu, B. S., Sharda, R., & Singh, S. (2021). Water footprint of crop production: A review. Indian J. Ecol48(2), 358-366.
Talel, B., Marouen, H., & Fayçal, B. H. (2015, December). Unbiased minimum variance state and fault estimation for nonlinear stochastic systems with unknown disturbances. In 2015 16th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA) (pp. 291-295). IEEE.
Wang, X. Y. (2010). Irrigation water use efficiency of farmers and its determinants: Evidence from a survey in northwestern China. Agricultural Sciences in China9(9), 1326-1337.