نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار بخش کشاورزی دانشگاه پیام نور ایران

2 استادیار بخش کشاورزی، دانشگاه پیام نور، ایران

چکیده

شناسایی مکانیسم مولکولی-پروتئینی زعفران در مقابل تنش اسمزی در ایران که یکی از کشورهای خشک و نیمه­خشک جهان محسوب می­شود، از اهمیت ویژه­ای برخوردار است. بدین منظور و برای بررسی پاسخ پروتئینی به تنش اسمزی اعمال شده با غلظت­های مختلف PEG6000، آزمایشی با استفاده از دو توده زعفران (تربت­حیدریه و مرند) به روش کشت آبکشت (هیدروپونیک) در مرحلة رشد رویشی (گیاهچه‌ای) در گلخانه انجام شد. دو هفته پس از اعمال تنش اسمزی نمونه­برداری از کلیه واحدهای آزمایشی انجام شد. بر طبق نتایج بدست آمده از لحاظ واکنش پروتئینی تحت تنش اسمزی توده تربت­حیدریه نسبت به توده مرند در وضعیت مطلوبتری قرار داشت. همچنین نتایج تجزیه پروتئوم دو توده نشان داد که از بین 17 لکه پروتئینی معنی­دار بین گیاهان شاهد و تیمارهای تنش اسمزی، تعداد چهار لکه پروتئینی بین دو توده مشترک و تعداد شش و هفت لکه پروتئینی بترتیب منحصر به توده تربت­حیدریه و مرند بودند. در تفسیر پاسخ اختصاصی می­توان اظهار داشت که توده متحمل­تر تربت­حیدریه تحت تنش بیشتر در مسیر دفاع آنتی­اکسیدانی فعالیت داشته و شامل افزایش فعالیت پروتئین­های harpin binding protein 1 و  peroxiredoxin بودند. در حالی که توده حساس­تر مرند بیشتر آسیب خود را در مسیر­های مختلف بیولوژی از طریق کاهش فعالیت پروتئین­ها خصوصاً کاهش پروتئین Thylakoid lumenal 29.8 kDa دخیل در واکتش نوری فتوسنتز داشت. در مجموع پاسخ پروتئینی متفاوت دو توده و مهم­ترین واکنش پروتئینی و مسیرهای متابولیکی مهم توده­های مورد مطالعه زعفران مشخص شد.

کلیدواژه‌ها

Ali, G. M., & Komatsu, S. (2006). Proteomic Analysis of Rice Leaf Sheath during Drought Stress. Journal of Proteome Research, 5 (2), 396-403.
Berardini, T. Z., Mundodi, S., Reiser, R., Huala, E., Garcia-Hernandez, M., Zhang, P., Mueller, L. M., Yoon, J., Doyle, A., Lander, G., Moseyko, N., Yoo, D., Xu, I., Zoeckler, B., Montoya, M., Miller, N., Weems, D., & Rhee, S. Y. (2004). Functional annotation of the Arabidopsis genome using controlled vocabularies. Plant Physiology, 135, 745-755.
Bery, E. A. (2007). Molecular and Physiological Responses to Water Deficit Stress. Department of Genetics and Cell Biology, University of Chicago, USA.
Caruso, G., Cavaliere, C., Foglia, P., Gubbiotti, R., Samperi, R., & Laganà, A. (2009). Analysis of drought responsive proteins in wheat (Triticum durum) by 2D-PAGE and MALDI-TOF mass spectrometry. Plant Science, 177, 570-576.
Cui, S., Huang, F., Wang, J., Ma, X., Cheng, Y., & Liu, J. (2005). A proteomic analysis of cold stress responses in rice seedlings. Proteomics, 5 (12), 3162-3172.
Damerval, C., De Vienne, D., Zivy, M., & Thiellement, H. (1986). Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling roteins. Electrophoresis, 7, 52-4.
Dehghani Bidgoli, R., Salari, A., & Bashiri, M. (2019). The Effect of Various Irrigation Regimes on Phenolic Compounds and Antioxidant Activity of Saffron Stigma Extract. Journal of Saffron Research, 7 (1), 109-122. [in Persian].
Ding, Y., & Ma, Q. H. (2004). Characterization of a cytosolic malate dehydrogenase cDNA which encodes an isozyme toward oxaloacetate reduction in wheat. Biochimie, 86, 509-518.
Ford, K. L., Cassin, A., & Bacic, A. (2011). Quantitative proteomic analysis of wheat cultivars with differing drought stress tolerance. Plant Science, 2 (44), 1-11.
Ghorbanpour, M., Ahmadian, A., & Yousefijavan, I. (2020). Interaction effects of salt stress and salicylic acid levels on physiological trials of saffron (Crocus sativus L.). Journal of Saffron Research, 8 (2), 359-373. [in Persian].
Golmohammadi, F. (2014). Saffron and its farming, economic importance, export, medicinal characteristics and various uses in south Khorasan province-east of Iran. International Journal of Farming Allied Science, 3 (5), 566-596.
Granlund, I., Storm, P., Schubert, M., Garcia-Cerdi, J. G., Funk, C., & Wolfgang, P. S. (2009). The TL29 Protein is Lumen Located, Associated with PSII and Not an Ascorbate Peroxidase. Plant and Cell Physiology, 50 (11), 1898-1910.
Guan, H. P., & Keeling, P. L. (1998). Starch Biosynthesis: Understanding the functions and interactions of multiple isoenzymes of starch synthase and branching enzyme. Trends in Glycoscience and Glycotechnology, 10, 307-319.
Guicherd, P., Peltier, J. P., Gout, E., Bligny, R., & Marigo, G. (1997). Osmotic adjustment in Fraxinus excelsior L. malate and mannitol accumulation in leaves under drought conditions. Trees, 11, 155-161.
Guo, G., Ge, P., Ma, C., Li, X., Lv, D., Wang, S., Ma, W., & Yan, Y. (2012). Comparative proteomic analysis of salt response proteins in seedling roots of two wheat varieties. Journal of Proteomics, 75 (6), 1867-1885.
Guo, F., & Mccubbin, A. G. (2012). The pollen-specific R-SNARE/longin PiVAMP726 mediates fusion of endo- and exocytic compartments in pollen tube tip growth. Journal of Experimental Botany, 63, 3083-3095.
Han, F., Chen, H., Yan, M. F., Liu, G. S., & Shen, S. H. (2009). A comparative proteomic analysis of rice seedlings under various high-temperature stresses. Biochimica et Biophysica Acta, 1794 (11), 1625-1634.
Hashimoto, M., & Komatsu, S. (2007). Proteomic analysis of rice seedling during cold stress. Proteomics, 7, 293-302.
Hashimoto, M., Toorchi, M., Matsushita, K., Iwasaki Y., & Komatsu, S. (2009). Proteome analysis of rice root plasma membrane and detection of cold stress responsive proteins. Protein & Peptide Letters, 16, 685-697.
Herbert, B. (1999). Advances in protein solubilisation for two-dimensional electrophoresis. Electrophoresis, 20 (4-5), 660-663.
Hosseini, M., & Rahimi, H. (2018). Effect of moisture stress on yield and qualitative indices of saffron (Crocus sativus L.). Jounal of Saffron Research, 5 (2), 247-255. [in Persian].
Hosseini Salekdeh, Gh., Siopongco, J., Wade, L. J., Ghareyazie, B., & Bennett, J. (2002). Proteomics analysis of rice leaves during drought stress and recovery. Proteomics, 2, 1131-1145.
Ji, K., Wang, Y., Sun, W., Lou, Q., Mei, H., Shen, S., & Chen, H. (2012). Drought-responsive mechanisms in rice genotypes with contrasting drought tolerance during reproductive stage. Journal of Plant Physiology, 169, 336-344.
Kausar, R., Arshad, M., Shahzad, A., & Komatsu, S. (2013). Proteomics analysis of sensitive and tolerant barley genotypes under drought stress. Amino Acids, 44, 345-359.
Khashei Siuki, A., Hashemi, S. R., & Ahmadee, M. (2015). The effect of pottasic zeolite and irrigation scheduling on saffron yield. Reserch Project in University of Birjand, Iran. [in Persian].
Kieselbach, T., Bystedt, M., & Zentgraf, U. (2000). A peroxidase homologue and novel plastocyanin located by proteomics to the Arabidopsis chloroplast thylakoid lumen. FEBS Letters, 480, 271-276.
Kim, S. H., Mizuno, K., & Fujimura, T. (2002). Regulated expression of ADPglucose pyrophosphorylase and chalcone synthase during root development in sweet potato. Plant Growth Regulation, 38, 173-179
Koh, J., Chen, G., Yoo, M-J., Zhu, N., Dufresne, D., Erickson, J. E., Shao, H., & Chen, S. (2015). Comparative proteomic analysis of Brassica napus in response to drought stress. Journal of Proteome Research, 14 (8), 3068-3081.
Kruger, N. J. (1997). Carbohydrate synthesis and degradation. In: Dennis, D. T., Turpin, D. H., Lefebvre, D. D., & Layzell, D. B. (Eds.), Plant Metabolism (pp. 83-104). Essex: Addison Wesley Longman.
Macdonald, F. D., & Buchanan, B. B. (1997). The reductive pentose phosphate pathway and its regulation. In: Dennis, D. T., Turpin, D. H., Lefebvre, D. D., & Layzell, D. B. (Eds.), Plant Metabolism (pp. 299-313). Essex: Addison Wesley Longman.
Michaletti, A., Naghavi, M. R., Toorchi, M., Zolla L., & Rinalducci, S. (2018). Metabolomics and proteomics reveal drought-stress responses of leaf tissues from spring-wheat. Scientific Reports, 8, 1-18.
Minarik, P., Tomaskova, N., Kollarova, M., & Antalik, M. (2002). Malate dehydrogenases-structure and function. General Physiology and Biophysics, 21, 257-265.
Moller, A. L., Pedas, P., Andersen, B., Svensson, B., Schjoerring, J. K., & Finnie, C. (2011). Responses of barley root and shoot proteomes to longterm nitrogen deficiency, short-term nitrogen starvation and ammonium. Plant, Cell & Environment, 34 (12), 2024-2037.
Mushtaq, R., Katiyar, S., & Bennett, J. (2008). Proteomic analysis of drought stress-responsive proteins in rice endosperm affecting grain quality. Journal of Crop Science and Biotechnology, 11, 227-232.
Musrati, R. A., Kollarova, M., Mernik, N., & Mikulasova, D. (1998). Malate dehydrogenase: distribution, function and properties. General Physiology and Biophysics, 17, 193-210.
Naghavi, M. R. (2010). Response and 2-Dimensional electrophoresis pattern of spring rapeseed genotypes under osmotic stress (Master’s thesis). University of Tabriz, Iran. [in Persian].
Naghavi, M. R. (2014). Evaluation of spring wheat cultivars under drought stress and proteome analysis for the most tolerant and sensitive ones (Ph.D’s thesis). University of Tabriz, Iran. [in Persian].
Nozu, Y., Tsugita, A., & Kamijo, K. (2006). Proteomic analysis of rice leaf, stem and root tissues during growth course. Proteomics, 6, 3665-3670.
Panchuk, I. I., Zentgraf, U., & Volkov, R. A. (2005). Expression of the Apx gene family during leaf senescence of Arabidopsis thaliana. Planta, 222, 926-932.
Pazoki, A., Kariminejad, M., & Foladi Targhi, A. (2013). Effect of planting patterns on yield and some agronomical traits in saffron (Crocus sativus L.) under different irrigation intervals in Shahr-e-Rey region. International Journal of Farming and Allied Science, 2 (S2), 1363-1368.
Plucken, H., Muller, B., Grohmann, D., Westhoff, P., & Eichacker, L. A. (2002). The HCF136 proteinis essential for assembly of the photosystem II reaction center in Arabidopsis thaliana. FEBS Letters, 532, 85-90.
Porubleva, L., Vander Velden, K., Kothari, S., Oliver, D. J., & Chitnis, P. R. (2001). The proteome of maize leaves: use of gene sequences and expressed sequence tag data for identification of proteins with peptide mass fingerprints. Electrophoresis, 22, 1724-1738.
Samaj, J., & Thelen, J. J. (2007). Plant proteomics. In: Samaj, J., & Thelen, J. J. (Eds.). Plant proteomics. Institute of Plant Genetics and Biotechnology (pp. 42-98)., Slovak Republic.
Santos, C., Pereira, A., Pereira, S. & Teixeira, J. (2004). Regulation of glutamine synthetase expression in sunflower cells exposed to salt and osmotic stress. Scientia Horticulturae, 103, 101-111.
Saraste, M. (1999). Oxidative phosphorylation at the fin de siècle. Science, 283, 1488-1493.
Shao, H. B., Liang, M. A., Shao, M. A., & Wang, B. C. (2005). Changes of some physiological and biochemical indices for soil water deficits 10 wheat (Triticum aestivum) genotypes at seedling stage. Colloids and Surfaces B: Biointerfaces, 42 (2), 107-113.
Sharma, R., De Vleesschauwer, D., Sharma, M. K., & Ronald, P. C. (2013). Recent advances in dissecting stress-regulatory crosstalk in rice. Molecular Plant, 6, 250-260.
Stenbeck, G. (1998). Soluble NSF-attachment proteins. The International Journal of Biochemistry & Cell Biology, 30, 573-577.
Stéphanie, M., Bernard, Z., & Habash, D. (2009). The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling. New Phytologist, 182, 608-620.
Stock, D., Gibbons, C., Arechaga, I., Leslie, A. G., & Walker, J. E. (2000). The rotary mechanism of ATP synthase. Current Opinion in Structural Biology, 10, 672-679.
Tamoi, M., Nagaoka, M., Yabuta, Y., & Shigeoka, S. (2005). Carbon metabolism in the Calvin cycle. Plant Biotechnology, 22, 355-360.
Tetlow, I. J., Davies, E. J., Vardy, K. A., Bowsher, C. G., Burrell, M. M., & Emes, M. J. (2003). Subcellular localization of ADPglucose pyrophosphorylase in developing wheat endosperm and analysis of the properties of a plastidial isoform. Journal of Experimental Botany, 54, 715-725.
Toorchi, M., Yukawa, K., Nouri, M. Z., & Komatsu, S. (2009). Proteomics approach for identifying osmotic-stress-related proteins in soybeans roots. Peptides, 30, 2108-2117.
Wang, M. C., Peng, Z. Y., Li, C. L., Li, F., Liu, C., & Xia, G. M. (2008). Proteomic analysis on a high salt tolerance introgression strain of Triticum aestivum/Thinopyrum ponticum. Proteomics, 8, 1470-1489.
Wang, W., Vinocur, B., Soseyov, O., & Altman, A. (2004). Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science, 9, 244-52.
Wilkinson, S., & Davies, W. J. (2002). ABA‐based chemical signalling: the co‐ordination of responses to stress in plants. Plant, Cell & Environment, 25 (2), 195-210.
Xue, G. P., Mcintyre, C. L., Glassop, D., and Shorter, R. (2008). Use of expression analysis to dissect alterations in carbohydrate metabolism in wheat leaves during drought stress. Plant Molecular Biology, 67, 197-214.
Ye, J., Wang, S., Zhang, F., Xie, D., & Yao, Y. (2013). Proteomic analysis of leaves of different wheat genotypes subjected to PEG6000 stress and rewatering. Plant Omics, 6(4), 286-294.
Yordanov, I., Velikova, V., & Tsoney, T. (2003). Plant responses to drought and stress tolerance. Bulg. J. Plant Physiol. Special Issue, 187-206.
Yousefi Javan, I. and Gharari, F., (2018). Extraction and isolation of three genes of saffron (Crocus sativus L.) such as AREB, DREB and MPK to drought resistance. Journal of Saffron Research, 6 (2), 251-267. [in Persian].
Zang, X., & Komatsu, S. (2007). A proteomic approach for identifying osmotic-stress-related proteins in rice. Phytochemisty, 68, 426-437.
Zhang, L., Xiao, S., Li, W., Feng, W., Li, J., Wu, Z., Gao, X., Liu, F., & Shao, M. (2011). Overexpression of a Harpin-encoding gene hrf1 in rice enhances drought tolerance. Journal of Experimental Botany, 62 (12), 4229-4238.
Zhu, M., Simons, B., Zhu, N., David, G., Oppenheimer, M., & Chen, S. (2010). Analysis of abscisic acid responsive proteins in Brassica napus guard cells by multiplexed isobaric tagging. Proteomics, 73, 790-805.