Alinejad, M., Buraidah, M. H., Teo, L. P., & Arof, A. K. (2023). Saffron dye-sensitized solar cells with polyvinyl alcohol based gel polymer electrolytes. Optical and Quantum Electronics, 55(9), 804. https://doi.org/10.1007/s11082-023-05078-z
Arof, A. K., Mat Nor, N. A., Ramli, N. R., Aziz, N., Noor, I. M., & Taha, R. M. (2017). Utilization of saffron (Crocus sativus L.) as sensitizer in dye-sensitized solar cells (DSSCs). Optical and Quantum Electronics, 49(1). https://doi.org/10.1007/s11082-016-0882-6
Babu, D. D., Gachumale, S. R., Anandan, S., & Adhikari, A. V. (2015). New D-π-A type indole based chromogens for DSSC: Design, synthesis and performance studies. Dyes and Pigments, 112, 183–191. https://doi.org/10.1016/j.dyepig.2014.07.006
Bathaie, S., Farajzade, A., & Hoshyar, R. (2014). A review of the chemistry and uses of crocins and crocetin, the carotenoid natural dyes in saffron, with particular emphasis on applications as colorants including their use as biological stains. Biotechnic & Histochemistry, 89(6), 401–411. https://doi.org/10.3109/10520295.2014.890741
Bisquert, J. (2002). Theory of the Impedance of Electron Diffusion and Recombination in a Thin Layer. The Journal of Physical Chemistry B, 106(2), 325–333. https://doi.org/10.1021/jp011941g
Bisquert, J., Fabregat-Santiago, F., Mora-Seró, I., Garcia-Belmonte, G., & Giménez, S. (2009). Electron Lifetime in Dye-Sensitized Solar Cells: Theory and Interpretation of Measurements. The Journal of Physical Chemistry C, 113(40), 17278–17290. https://doi.org/10.1021/jp9037649
Dambhare, M. V., Butey, B., & Moharil, S. V. (2021). Solar photovoltaic technology: A review of different types of solar cells and its future trends. Journal of Physics: Conference Series, 1913(1). https://doi.org/10.1088/1742-6596/1913/1/012053
De Angelis, F., Fantacci, S., Selloni, A., Grätzel, M., & Nazeeruddin, M. K. (2007). Influence of the Sensitizer Adsorption Mode on the Open-Circuit Potential of Dye-Sensitized Solar Cells. Nano Letters, 7(10), 3189–3195. https://doi.org/10.1021/nl071835b
Dehghani Bidgoli, R., Salary, A., & Bashiri, M. (2018). Effect of Irrigation Regimes on Phenolic Compounds and Antioxidant Activity of Saffron Stigma Extract. Journal of Saffron Research, 7, 109–122. [In Persian]
González-Pedro, V., Shen, Q., Jovanovski, V., Giménez, S., Tena-Zaera, R., Toyoda, T., & Mora-Seró, I. (2013). Ultrafast characterization of the electron injection from CdSe quantum dots and dye N719 co-sensitizers into TiO2 using sulfide based ionic liquid for enhanced long term stability. Electrochimica Acta, 100, 35–43. https://doi.org/10.1016/j.electacta.2013.03.119
Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., & Pettersson, H. (2010). Dye-Sensitized Solar Cells. Chemical Reviews, 110(11), 6595–6663. https://doi.org/10.1021/cr900356p
Hossein Goli, S. A., Mokhtari, F., & Rahimmalek, M. (2012). Phenolic Compounds and Antioxidant Activity from Saffron (Crocus sativus L.) Petal. Journal of Agricultural Science, 4(10), 175–181. https://doi.org/10.5539/jas.v4n10p175
Hosseinpanahi, K., Abbaspour-Fard, M. H., Feizy, J., & Golzarian, M. R. (2017). Dye-Sensitized Solar Cell Using Saffron Petal Extract as a Novel Natural Sensitizer. Journal of Solar Energy Engineering, Transactions of the ASME, 139(2), 1–5. https://doi.org/10.1115/1.4034908
Hosseinzadeh, H., Motamedshariaty, V., & Hadizadeh, F. (2007). Antidepressant effect of kaempferol, a constituent of saffron (Crocus sativus) petal, in mice and rats. Pharmacologyonline, 2, 367–370.
Hosseinzadeh, M., & Moudi, M. (2022). Overview of Effective Saffron Compounds and Its Reactions on Neurodegenerative Diseases of Nervous System. Journal of Saffron Research, 10(2), 258–275. [In Persian]
Hug, H., Bader, M., Mair, P., & Glatzel, T. (2014). Biophotovoltaics: Natural pigments in dye-sensitized solar cells. Applied Energy, 115, 216–225. https://doi.org/10.1016/j.apenergy.2013.10.055
Kandjani, S. A., Chan, S. W., Barille, R., Dabos-Seignon, S., & Nunzi, J. M. (2007). Linear and nonlinear holographic gratings in saffron. Nonlinear Optics Quantum Optics, 36(3–4), 195–205.
Khalili, M., Abedi, M., & Amoli, H. S. (2017). Influence of saffron carotenoids and mulberry anthocyanins as natural sensitizers on performance of dye-sensitized solar cells. Ionics, 23(3), 779–787. https://doi.org/10.1007/s11581-016-1862-3
Kianmehr, M., & Khazdair, M. R. (2020). Possible therapeutic effects of Crocus sativus stigma and its petal flavonoid, kaempferol, on respiratory disorders. Pharmaceutical Biology, 58(1), 1140–1149. https://doi.org/10.1080/13880209.2020.1844762
Kubelka, P., & Munk, F. (1931). An article on optics of paint layers. Z. Tech. Phys., 12(1930), 593–601.
Kubo, I., & Kinst-Hori, I. (1999). Flavonols from Saffron Flower: Tyrosinase Inhibitory Activity and Inhibition Mechanism. Journal of Agricultural and Food Chemistry, 47(10), 4121–4125. https://doi.org/10.1021/jf990201q
Li, C. Y., Lee, E. J., & Wu, T. S. (2004). Antityrosinase Principles and Constituents of the Petals of Crocus sativus. Journal of Natural Products, 67(3), 437–440. https://doi.org/10.1021/np0302854
Liu, B.-Q., Zhao, X.-P., & Luo, W. (2008). The synergistic effect of two photosynthetic pigments in dye-sensitized mesoporous TiO2 solar cells. Dyes and Pigments, 76(2), 327–331. https://doi.org/10.1016/j.dyepig.2006.09.004
Maggi, L., Carmona, M., Kelly, S. D., Marigheto, N., & Alonso, G. L. (2011). Geographical origin differentiation of saffron spice (Crocus sativus L. stigmas) – Preliminary investigation using chemical and multi-element (H, C, N) stable isotope analysis. Food Chemistry, 128(2), 543–548. https://doi.org/10.1016/j.foodchem.2011.03.063
Melnyk, J. P., Wang, S., & Marcone, M. F. (2010). Chemical and biological properties of the world’s most expensive spice: Saffron. Food Research International, 43(8), 1981–1989. https://doi.org/10.1016/j.foodres.2010.07.033
O’Regan, B., & Grätzel, M. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 353(6346), 737–740. https://doi.org/10.1038/353737a0
Qadir, M. M., Nissar, J., Dar, A. H., Ganaie, T. A., & Bashir, M. (2024). Insights into phytochemistry and bioactive potential of saffron ( Crocus sativus L) petal . Future Postharvest and Food, 1(3), 300–316. https://doi.org/10.1002/fpf2.12025
Razaghizadeh, A., Rafee, V., Nakhaei, R., & Ameri, F. (2025). Effect of Silver Nanoparticles Embedding in Mesoporous TiO2 Layer on the Performance Enhancement of Dye-Sensitized Solar Cells Using Natural Dyes. Plasmonics. https://doi.org/10.1007/s11468-025-02836-5
Reddy, K. M., Manorama, S. V., & Reddy, A. R. (2003). Bandgap studies on anatase titanium dioxide nanoparticles. Materials Chemistry and Physics, 78(1), 239–245. https://doi.org/10.1016/S0254-0584(02)00343-7
Ríos, J. L., Recio, M. C., Giner, R. M., & Meñez, S. (1996). An update review of saffron and its active constituents. Phytotherapy Research, 10(3), 189–193. https://doi.org/10.1002/(SICI)1099-1573(199605)10:3<189::AID-PTR754>3.0.CO;2-C
Samira, A. (2025). Investigating the Effect of Saffron (Crocus sativus L.) and Its Active Compounds on Enhancing Sleep Quality in Adults: A Narrative Review. Journal of Saffron Research, 12(1), 168–181. http://dx.doi.org/10.22077/jsr.2025.8483.1252 [In Persian]
Seol, M., Kim, H., Kim, W., & Yong, K. (2010). Highly efficient photoelectrochemical hydrogen generation using a ZnO nanowire array and a CdSe/CdS co-sensitizer. Electrochemistry Communications, 12(10), 1416–1418. https://doi.org/10.1016/j.elecom.2010.07.035
Serrano-Díaz, J., Sánchez, A. M., Maggi, L., Carmona, M., & Alonso, G. L. (2011). Synergic effect of water-soluble components on the coloring strength of saffron spice. Journal of Food Composition and Analysis, 24(6), 873–879. https://doi.org/10.1016/j.jfca.2011.03.014
Shah, N., Shah, A. A., Leung, P. K., Khan, S., Sun, K., Zhu, X., & Liao, Q. (2023). A Review of Third Generation Solar Cells. Processes, 11(6). https://doi.org/10.3390/pr11061852
Tauc, J., Grigorovici, R., & Vancu, A. (1966). Optical Properties and Electronic Structure of Amorphous Germanium. Physica Status Solidi (B), 15(2), 627–637. https://doi.org/10.1002/pssb.19660150224
WINTERHALTER, P., & STRAUBINGER, M. (2000). SAFFRON—RENEWED INTEREST IN AN ANCIENT SPICE. Food Reviews International, 16(1), 39–59. https://doi.org/10.1081/FRI-100100281
Zhou, H., Wu, L., Gao, Y., & Ma, T. (2011). Dye-sensitized solar cells using 20 natural dyes as sensitizers. Journal of Photochemistry and Photobiology A: Chemistry, 219(2–3), 188–194. https://doi.org/10.1016/j.jphotochem.2011.02.008