رابطه بین تغییرات ترکیبات فنولی و نیتروژن در گیاه زعفران (Crocus sativus L.) در شرایط زراعی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 مربی پژوهشکده علوم و صنایع غذایی مشهد

2 استادیار پژوهشکده علوم و صنایع غذایی مشهد

چکیده

این مطالعه با هدف ارزیابی روند تغییرات ترکیبات فنولی و نیتروژن در ریزوسفر و اندام‌های هوایی و زیرزمینی این گیاه در طول فصل رشد، در قالب طرح بلوک‌های کامل تصادفی با چهار تکرار طی دو سال 1387 و 1388 انجام شد. چهار نوبت نمونه‌برداری از ریزوسفر، بنه و برگ‌ زعفران طی مهر و بهمن ماه 1387 و اردیبهشت و تیر ماه 1388 از مزارع چهار ساله زعفران در بخش مرکزی روستای آبرود در شهرستان تربت حیدریه انجام شد. به منظور اندازه‌گیری محتوی کل ترکیبات فنولی و نیتروژن به ترتیب از روش‌های فولین- سیوکالتو و هضم کجلدال استفاده شد. نتایج نشان داد که محتوی نیتروژن و فنول اندام‌های هوایی و زیرزمینی زعفران و ریزوسفر طی مراحل مختلف نمونه‌برداری به طور معنی‌داری متفاوت بود (05/0P<). محتوی ترکیبات نیتروژن و فنول برگ به مراتب بالاتر از بنه و ریزوسفر بدست آمد. به طوری‌که بیشترین میزان فنول، در مرحله اول، دوم، سوم و چهارم نمونه‌برداری به ترتیب برای بنه، برگ، برگ و ریزوسفر با 3/13، 7/47، 11/48و 28/0 میلی‌گرم بر کیلوگرم بدست آمد. بالاترین میزان نیتروژن در مرحله اول، دوم، سوم و چهارم نمونه‌برداری به ترتیب برای بنه، برگ، برگ و ریزسفر با 60/1، 29/2، 14/1 و 91/0 میلی‌گرم بر کیلوگرم مشاهده شد. با افزایش غلظت نیتروژن، محتوی فنول به طور خطی افزایش یافت؛ به طوری‌که ضریبهمبستگی محتوی نیتروژن و فنول برابر با** 92/0=2 rتعیین گردید. افزایش مصرف نیتروژن تحت تأثیر افزایش تخصیص کربن با افزایش تولید مواد فتوسنتزی موجب افزایش غلظت ترکیبات فنولی به عنوان یکی از مهمترین متابولیت‌های‌ ثانویه گردید.

کلیدواژه‌ها


Abdullaev, F., 2006. Biological properties and medicinal use of saffron (Crocus sativus L.). Proceedings of the 2nd International Symposium on Saffron Biology and Technology. Mashhad, Iran, 28-30 October, p. 339-345.

Abe, K., Saito, H., 2000. Effects of saffron and its constituent crocin on learning behavior and long term potentiation. Phytotherapy Research 14: 149-152.

Areias, F., Vanentao, P., Andrade, P.B., Ferreres, F., Seabra, R.M., 2000. Flavonoids and phenolic acids of sage: Influence of some agricultural factors. Journal of Agriculture and Food Chemistry 48: 6081–6084.

Asami, D.K., Hong, Y.J., Barrett, D.M., Mitchell, A.E., 2003. Comparison of the total phenolic and ascorbic acid content of freeze-dried and air-dried marionberry, strawberry, and corn grown using conventional, organic, and sustainable agricultural practices. Journal of Agriculture and Food Chemistry 51: 1237-1241.

Banerjee, D., Chakrabarti, S., Hazra, A.K., Banerjee, S., Ray, J., Mukherjee, B., 2008. Antioxidant activity and total phenolics of some mangroves in Sundarbans. African Journal of Biotechnology 7(6): 805-810.

Barnes, J.S., Nguyen, H.P., Shen, S., Schug, K.A., 2009. General method for extraction of blueberry anthocyanins and identification using high performance liquid chromatography−electrospray ionization−ion trap−time of flight−mass spectrometry. Journal of Chromatography A 1216: 4728−4735.

Boudet, A.M., 2007. Evolution and current status of research in phenolic compounds. Phytochemistry 68: 2722–2735.

Bravo, L., 1998. Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutrition Reviews 56: 317–333.

Bremner, J.M., 1970. Nitrogen total, regular Kjeldahl method, In: Methods of Soil Analysis, Part II: Chemical and Microbiological Properties. 2nd Ed. Agronomy 9(1). A.S.A. Inc., S.S.S.A. Inc., Madison publisher, Wisconsin., USA, pp. 610-616.   

Chia-Ying, L., E-Jian, L., andTian-Shung, W., 2004. Antityrosinase principles and constituents of the petals of Crocus sativus. Journal of Natural Products 67: 437-440.

Chrungoo, N.K., Koul, K.K., Farooq, S., 1986. Phenolic compounds in corms of saffron Crocus (Crocus sativus L.) during bud development. Plant Physiology and Biochemistry 13(2): 78-81.

Dixon, R.A., Harrison, M.J., Lamb, C.J., 1994. Early events in the activation of plant defense responses. Annual Review of Phytopathology 32: 479-501.

Esmaeili, N., Ebrahimzadeh, H., Abdi, K., Safarian, S., 2011. Determination of some phenolic compounds in Crocus sativus L. corms and its antioxidant activities study. Pharmacognosy Magazine 7: 74-80.

Fanasca, S., Colla, G., Maiani, G., Venneria, E., Rouphael, Y., Azzini, E., Saccardo, F., 2006. Changes in antioxidant content of tomato fruits in response to cultivar and nutrient solution composition. Journal of Agricultural and Food Chemistry 54: 4319–4325.

Fernandez, J.A., Escribano, J., Piqueras, A., Medina, J., 2000. A glycoconjugate from corms of saffron plant (Crocus sativus L.) inhibits root growth and affects in vitro cell viability. Journal of Experimental Botany 51 (345): 731-737.

Ferrara, L., Naviglio, D., Gallo, M., 2014. Extraction of bioactive compounds of saffron (Crocus sativus L.) by ultrasound assisted extraction (UAE) and by rapid solid-liquid dynamic extraction (RSLDE). European Scientific Journal 10(3): 1857–7881.

Freire, C.M.M., Marques, M.O.M., Costa, M., 2006. Effects of seasonal variation on the central nervous system activity of Ocimum gratissium L. essential oil. Journal of Ethnopharmacology 105: 161–166.

Geneva, M.P., Stancheva, I.V., Boychinova, M.M., Mincheva, M.H., Yonova, P.A., 2010. Effects of foliar fertilization and arbuscular mycorrhizal colonization on Salvia officinalis L. growth, antioxidant capacity, and essential oil composition. Journal of the Science of Food and Agriculture 99: 686–702.

Ghamsari, L., Keyhani, E., Golkhoo, S., 2007. Kinetics properties of Guaiacol Peroxidase activity in Crocus sativus L. corm during rooting. The Iranian Biomedical Journal 11(3): 137-146. (In Persian with English Summary)

Goli, S.A.H., Mokhtari F., Rahimmalek, M., 2012. Phenolic compounds and antioxidant activity from saffron (Crocus sativus L.) petal. Journal of Agricultural Science 4: 175-181.

Gulçin, I., Huyut, Z., Elmastas, M., Aboul-Enein, H.Y., 2010. Radical scavenging and antioxidant activity of tannic acid. Arabian Journal of Chemistry 3: 43–53.

Hadizadeh, F., Khalilia, N., Hosseinzadeh, H., Khair-Aldine, R., 2003. Kaempferol from saffron petals. Iranian Journal of Pharmaceutical Research 2: 251-262. (In Persian with English Summary)

Haslam, E., Lilley, T.H., 1988. Natural astringency in foodstuffs-a molecular interpretation. CRC Critical Reviews in Food Science and Nutrition 27: 1-40.

Haukioja, E., Ossipov, V., Koricheva, J., Honkanen, T., Larsson, S., Lempa, K., 1998. Biosynthetic origin of carbon-based secondary compounds: Cause of variable responses of woody plants to fertilization? Chemoecology 8: 133–139.

Heim, K.E., Tagliaferro, A.R., Bobilya, D.J., 2002. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. Journal of Nutritional Biochemistry 13(10): 572-584.

Henríquez, C., Almonacid, S., Escobar, B., Chiffelle, I., Gómez, M., Speisky, H., 2009. Antioxidant content and activity in different structures of five apple cultivars grown in Chile. Acta Horticulturae 841: 275-280.

Hosseini,M.,Sadeghian,A.R., Barakati,F.,2015.Study on trends in phenolic compounds during saffron plant growth by Folin Cio-Calteau micro method.Journal of Saffron Research.3(2):155-162.

Hosseinzadeh, H., Motamedshariaty, V., Hadizadeh, F., 2007. Antidepressant effect of kaempferol, a constituent of saffron (Crocus sativus) petal, in mice and rats. Pharmacology 2: 367-70.

Javanmardi, J., Stushnoff, C., Locke, E., Vivanco, J.M., 2003. Antioxidant activity and total phenolic content of Iranian Ocimum accessions. Food Chemistry 83: 547-550.

Jésica Serrano-Díaz, J., Sáchez, A.M., Martínez-Tomé, M., Winterhalter, P., Alonso, G.L., 2014. Flavonoid determination in the quality control of floral bioresidues from Crocus sativus L. Journal of Agricultural and Food Chemistry 62(14): 3125–3133.

Jeuffroy, M.H., Ney, B., Ourry, A., 2002. Integrated physiological and agronomic modelling of N capture and use within the plant. Journal of Experimental Botany 53 (370): 809-823.

Kefeli, V.I., Kalevitch, M.V., Borsari, B., 2003. Phenolic cycle in plants and environment. Journal of Cell and Molecular Biology 2: 13-18.

Kwee, E.M., Niemeyer, E.D., 2011. Variations in phenolic composition and antioxidant properties among fifteen basil (Ocimum basilicum L.) cultivars. Food Chemistry 128: 1044–1050.

Lee, J., Scagel, C.F., 2010. Chicoric acid levels in commercial basil (Ocimum basilicum) and Echinacea purpurea products. Journal of Functional Foods 2: 77–84.

Makoi, J.H.J.R., Ndakidemi, P.A., 2007. Biological, ecological and agronomic significance of plant phenolic compounds in rhizosphere of the symbiotic legumes. African Journal of Biotechnology 6(12): 1358-1368.

Marino, M.A., Mazzanti, A., Assuero, S.G., Gastal, F., Echeverria, H.E., Andrade, F., 2004. Nitrogen dilution curves and nitrogen use efficiency during winter-spring growth of annual ryegrass. Agronomy Journal 96: 601-607.

Martino, E., Ramaiola, I., Urbano, M., Bracco, F., Collina, S., 2006. Microwave assisted extraction of cumarin and related compounds from Melilotus officinalis (L.) Pallas as an alternative to Soxhlet and ultrasound-assisted extraction Journal of Agricultural and Food Chemistry 1125(2): 147-151.

Mogren, L.M., Olsson, M.E., Gertsson, U.E., 2006. Quercetin content in field-cured onions (Allium cepa L.): Effects of cultivar, lifting time, and nitrogen fertilizer level. Journal of Agricultural and Food Chemistry 54: 6185–6191.

Mollafilabi, A., 2004. Experimental finding of production and echo physiological aspects of saffron (Crocus sativus L.). I. International Symposium on Saffron Biology and Biotechnology. Albacete, Spain.

Nell, M., Vötsch, M., Vierheilig, H., Steinhellner, S., Zitterl-Eglseer, K., Franz, C., Novak, J., 2009. Effect of phosphorus uptake on growth and secondary metabolites of garden sage (Salvia officinalis L.). Journal of the Science of Food and Agriculture 80: 1090–1096.

Nguyen, P.M., E.M. Kwee, E.D. Niemeyer., 2010. Potassium rate alters the antioxidant capacity and phenolic concentration of basil (Ocimum basilicum L.) leaves. Food Chemistry 123: 1235–1241.

Nørbæk, R., Brandt, K., Nielsen, J.K., Ørgaard, M., Jacobsen, N., 2002. Flower pigment composition of Crocus species and cultivars used for a chemotaxonomic investigation. Biochemical Systematics and Ecology 30: 763−791.

Omidi, A., Rahdari, S., Hassanpour Fard, M., 2014. A preliminary study on antioxidant activities of saffron petal extracts in lambs. Veterinary Science Development 4(5161): 1-4.

Parr, A.J., Bolwell, G.P., 2000. Phenols in the plant and in man. The potential for possible nutritional enhancement of the diet by modifying the phenols content or profile. Journal of the Science of Food and Agriculture 80: 985-1012.

Perner, H.S., Rohn, G., Driemel, N., Batt, D., Schwarz, L., Kroh, W., George, E., 2008. Effect of nitrogen species supply and mycorrhizal colonization on organosulfur and phenolic compounds in onion. Journal of Agricultural and Food Chemistry 56: 3538–3545.

Petersen, M., Abdullah, Y., Benner, J., Eberle, D., Gehlen, K., Hücherig, S., Janiak, V., Kim, K.H., Sander, M., Weitzel, C., Wolters, S., 2009. Evolution of rosmarinic acid biosynthesis. Phytochemistry 70: 1663–1679.

Scagel, C.F., Lee, J., 2012. Phenolic composition of basil plants is differentially altered by plant nutrient status and inoculation with mycorrhizal fungi. Horticultural Science 47(5): 660–671.

Sene, M., Dove, T., Gallet, C., 2001. Relationships between biomass, and phenolic production in grain sorghum grown under different conditions. Agronomy Journal 93: 49-54.

Shukla, A., Abad Farooqi, A., Shukla, Y., Sharma, S., 1992. Effect of triacontanol and chlormequat on growth, plant hormones and artemisinin yield in Artemisia annua L. Plant Growth Regulation 11: 165-171.

Singleton, V.L., Orthofer, R., Lamuela-Raventos, R.M., 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu Reagent. Methods in Enzymology 299: 152-178.

Sultana, B., Anwar, F., Ashraf, M., 2009. Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules 14: 2167−2180.

Teow, C.C., Troung, V.D., McFeeters, R.F., Thompson, R.L., Pecota, K.V., Yencho, G.C., 2007. Antioxidant activities, phenolic and β-carotene contents of sweet potato genotypes with varying flesh colours. Food Chemistry 103: 829-838.

Vogt, T., 2010. Phenylpropanoid biosynthesis. Molecular Plant 3: 2–20.

Williams, C.A., Harborne, J.B., Glodblatt, P., 1986. Correlations between phenolic patterns and tribal classification in the family Iridaceae. Phytochemistry 25 (9): 2135-2154.

Wintherhalter, P., Straubinger, M., 2000. Saffron– renewed interest in an ancient spice. Food Reviews International 16: 39-59.

Xu, B.J., Chang, S.K.C., 2007. A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. Journal of Food Science 72: 159−166.

Xuan, B., 1999. Effects of crocin analogs on ocular flow and retinal function. Journal of Ocular Pharmacology and Therapeutics 15: 143-152.

Yi, W., Wetzstein, H.Y., 2011. Effects of drying and extraction conditions on the biochemical activity of selected herbs. Horticultural Science 46:70–73.

Yi, W., Wetzstein, H.Y., 2010. Biochemical, biological and histological evaluation of some culinary and medicinal herbs grown under greenhouse and field conditions. Journal of the Science of Food and Agriculture 90: 1063–1070.

Zhang, L., Ye, G., Lin, Y., Zhou, H., Zeng, Q., 2009. Seasonal changes in tannin and nitrogen contents of Casuarina equisetifolia branchlets. Journal of Zheijang University Science B 10(2): 103-111.